English, from Middle French, from Late Latin, from Latin, from *Proto-Italic, from *Proto-Indo-European, a description of transmission of entwined sound and sense in a mouthful of air. Broken mirrors plucked out of the midden-heap of old Eurasia, laid out in a line. But in them the elevator-rush of time travel. Tree names are shifty. Indo-Europeanists drive themselves to fits over this, because it's a clue. A word for "beech" became "oak" in Greek. An Indo-European word for "oak" became "fir" in Germanic. The word that means "yew" in English is cognate with a word that means "willow" in Slavic. Words that mean "pine, fir" in one place have cognates that mean "oak" or "elm" in another. It seems at first as random as a shuffled deck, but when you cross-pollinate linguistics with paleo-climatology, the sense of it comes to focus. Beech mast was an ancient food source for agricultural animals across a wide stretch of Eastern Europe. But there were no beeches in Greece proper in the European climate at one time. There, the oak would have been the fruit-bearing tree par excellence for animal fodder. The tree was defined by its use, less than its species, as a post-Enlightenment mind would see it. English fir matches up etymologically with Latin quercus "oak." According to Indo-Europeanists, the meaning in the ancient word at the root of them both was "oak" and also "mountain forest," because oaks were the chief tree in upland regions in southern Europe. And, for a time, northern Europe, according to pollen dredged up from old bogs and lakes. But as the climate turned cooler again, the oaks retreated and conifers became the dominant mountain tree. There are relics of this sense in "fir"-related words in Germanic, such as Gothic fairgunni "mountainous region" and Old English firgen "mountain forest." And then you pause to look at the time scale of the climatology when these semantic shifts would have happened, and you realize you're standing face to face with a human artifact that has fossilized within it a specific experience from about 5,000 B.C. On rare occasions these words laid one after the other along the centuries align in just the right tilt and you can glimpse far down that well and catch light from something unimaginably ancient but recognizably human; the cognate of the paint-print hand on the cave wall, or a breath of meadow-air from the spring after the Ice Age.


Historical scientists categorize the types of number systems peoples use, much the same way philologists break down languages into "analytic," "agglutinative," "inflectional," etc. The path that leads to the discovery of "0" lies only in the most advanced type of number system, which is called "positional" because the value of a character depends on its position. Our modern way of counting is positional. The base figure "5" has a different value in 514 and in 145, determined by its position. The Romans, Greeks, Hebrews (and Aztecs and pre-Islamic Arabs and a great many others) used an "additive" system, which is fundamentally a transcription of counting. A Roman "V" meant "five" and that's all it could mean. An additive system can develop into a positional one -- the abacus has a tendency to suggest the positional model -- but as far as we know, the positional concept has emerged in only four places: c.2000 B.C.E., in Babylon; around the start of the Common Era, in China; between the 4th and 9th centuries C.E. among the Mayan astronomer-priests; and in India. Positional systems have certain features in common. One is that each base number is denoted by a discrete symbol, purely conventional and not a graphic representation of the number itself (i.e., not "four slashes" for "four," as the Greeks and Romans had). Imagine the scribal confusion if the Romans had tried to use positional mathematics with their numbering system: "423" would be IIII II III, while "342" would be III IIII II. Another feature of positional number systems is that they lack special symbols for numbers which are orders of magnitude of the base number. Romans had a symbol for "10," and a separate symbol for "100" (10 x 10) and another for "1,000" (10 x 100) and so on. This is necessary in an additive system, for simplicity of notation and record-keeping, but it is incompatible with a positional system. But think about the positional system. You come across a big stumbling block when you try to write a number like 2,002. For a Roman, that's no problem: MMII. But in a positional system, you have to find a way to indicate the absence of "tens" and "hundreds." You could leave a gap (the Babylonians did this at first), but that opens the door to more scribal errors, and anyway how do you indicate two gaps, as in 2,002? It becomes necessary to have a "zero," a character that signifies "empty." Maybe not necessary, because the brilliant Chinese mathematicians somehow managed to run a positional system without making this discovery. The Babylonians (eventually), the Indians, and the Mayans did discover it, however. But the next step, the true miracle moment, is to realize that that "symbol for nothing" that you're using is not just a place-holder, but an actual number: that "empty" and "nothing" are one. The null number is as real as "5" and "2,002" -- that's when the door blows open and the light blazes forth and numbers come alive. Without that, there's no modern mathematics, no algebra, no modern science. As far as we know, that has only happened once in human history, somewhere in India, in the intellectual flowering under the Gupta Dynasty, about the 6th century C.E. There was no "miracle moment," of course. It was a long, slow process. The daunting realization, for heirs of "Western Civilization," is that the Greek and Roman cultures we revere were benighted mathematically, plodding along in the most primitive of number systems. But as champions of these cultures point out, we can admire their accomplishments all the more for that. Some authorities, however, put up strong resistance to the theory of the Indian origin of modern mathematics. At first, they were mired in the same religion-based worldview that denied the Indo-European linguistic link: the number system simply had to be Hebrew in origin, because nothing else would comport with the Bible (so they thought). Later, however, resistance took refuge in unwillingness to concede cultural superiority to non-Western civilizations. It does seem to be a glaring omission in the "Greek miracle." Historical scientists in the early part of the 20th century (such as G.R. Kaye, N. Bubnov, B. Carra de Vaux, etc.) argued strongly against an Indian origin, insisting the numbers evolved in ancient Greece, perhaps among neo-Pythagoreans, were taken to Alexandria, and from there spread to Rome and Spain in the west (from whence medieval Europe rediscovered them), and, via trade routes, to India in the east. Among the many problems with this idea is the utter lack of documentary evidence for anything like a positional number system in Greece or Rome, and its requirement that we believe ancient people had made this wonderful practical discovery, yet did not put it to any use. Speculation about a Greek origin of the ten "Arabic numerals" goes back to the 16th century in Europe. But before that, there are many sources in Europe and the pre-Islamic Levant that frankly attribute them to India. The earliest depiction of them in English, "The Crafte of Nombrynge" (c.1350), correctly identifies them as "teen figurys of Inde." The Arabic sources, from the earliest times, refer to them as arqam al hind -- "figures from India" -- or some such name. The Muslims of that day, generally contemptuous of non-Islamic culture, had no problem conceding the invention of this number system to India.


I-Mutation I-MUTATION (also known as "i-umlaut") is the raising and fronting of a root vowel in anticipation of "i" or "y" sound in a suffix. This sounds complicated, but it's really pretty basic. You probably do it every time you speak. Think of the difference between the -o sound in the do of "How do you do?" and that of the last word in "How are you doing?" The last word of that sentence might be written *diwin if it were spelled phonetically the way the average modern American pronounces it. When that -o- shifts up to an -i-, that's i-mutation. Say the vowels slowly, in order, out loud, shifting from one to the other without pause -- "A-E-I-O-U" -- and feel how they "happen" in different parts of your mouth. Philologists talk of "high" and "low," "front" and back." "A" is the lowest, "backest" of our vowels, and that's why doctors tell you to make that sound when they want to look down your open throat. I-mutation is caused by the very human habit of laziness: taking the shortest distance between two points. The plural of man in ancient West Germanic, the ancestor of Old English, used to be a word something like *manniz. The speakers "cheated" on the first vowel in the word to be in position for the second vowel. It's the same thing you do with doing. It doesn't change the meaning of the word to do so. So after hundreds of years of this, the plural came out as *menniz, or something similar, when people said it. Eventually, the shifted vowel itself comes to stand for the plural, and since laziness dislikes doing the same job twice, the syllable at the end of the word slowly shriveled and dropped off. Most such suffix vowels were gone by the Old English period, but their effects remained and in a few cases still do. Some of the main places you can still find evidence of i-mutation are: 1. Abstract nouns formed from adjectives by adding -ith: foul-filth, hale-health, long-length, slow-sloth, strong-strength, wide-width, deep-depth. 2. Verbs formed from noun or adjective roots by adding -jan: doom-deem, food-feed, tale-tell, full-fill, blood-bleed, hale-heal. 3. Causative verbs formed from preterites of strong verbs by adding -jan: drank-drench, lie-lay, rose-raise, sat-set, drove-drive. Fell-fell is also an example, though it's not so obvious now. 4. Noun plurals in -iz: man-men, foot-feet, tooth-teeth, goose-geese, louse-lice, mouse-mice. Along with woman-women (derived from wif-man) these are the only survivors of this class, which was numerous in Old English and included such words as the ancestors of modern book, goat, and friend, which now have gone over to the -s plural. 5. Comparatives in -ir: old-elder, late-latter. 6. I-mutation turns up in an adjective formed from a noun by adding -ish in at least one important case: English (Old English Englisc) from the people called Angles.